If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6c^2+18c=0
a = 6; b = 18; c = 0;
Δ = b2-4ac
Δ = 182-4·6·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18}{2*6}=\frac{-36}{12} =-3 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18}{2*6}=\frac{0}{12} =0 $
| 4(3b-7)=8 | | 4m,m=3 | | 6x^2=1350 | | 7-3x=4x-6 | | 10x+14=-21 | | x*1.5=x*3 | | 10x+14=21 | | 8y÷7+5=77 | | (2x– 5)2– (3x+ 2)2= 0 | | (2x – 5)2 – (3x + 2)2 = 0 | | -3(2x-4+6x+7)=1/2(-36x+18) | | 26+9a=-5a+74 | | -6x-8=-13x-29 | | 12y+5=7y+25 | | -8m+9=-10m+15 | | -4y+10=-6y-16 | | 10x+6=51-5x | | 5x+10=100* | | 5m+6=4m-6 | | 7x+1=6x+10 | | x−3/10=−6 | | (15/4)-n=n+(1/2) | | 9•(3x)-4•(2x)=28+25x | | 70-80+m+10=180 | | 3x+15=10x–6 | | 36b^-2*b^2=0 | | (1-9x)/3-2=x/3-(11x-1)/2 | | 7x+11=3(x4) | | 3(3x+2)/2=5 | | -2(2x+1)=-18) | | h=-8-2h | | 4b2=b+7 |